Active Learning

Learn, UnLearn, Learn.

Understanding should never stay put. It is important to get a new understanding. Understanding can always be improved. 

There are two ways to do good science.
The first is to be smarter than everybody else.
The second way is to be stupider than everybody else—but persistent in the cycle of learn, unlearn, learn.

Hacked from Raoul Bott’s quote.

My father died on July 30th, 2013 and I intend to honor him, if I can, by writing a blog about him and the consequences of me integrating his ideas every year.  First year,  Second YearThird Year, Fourth YearFifth YearSixth Year, Seventh Year. This is the eighth year.

On Gestalt Science: Relational Complexity and Comparative Science
David West Keirsey and David Mark Keirsey

On the nature of ideas: almost right, almost wrong, brilliantly confused, sloppy confused.

On Ansatz and Ersatz Ideas

Feynman Diagram

No ideas are absolutely right. Good Ideas, that are almost right, model the world well. However, words are slippery and ambiguous, open to misinterpretation for those who are ill informed or misinformed. Ideas are model metaphors, limited in context.

Almost Right.

Green Ideas sleep furiously

There are almost right ideas that are complex ideas. These almost right ideas are a mixture of fast and slow ideas in a circumcised context. These ideas take time to be developed and are not the complete answer. These ideas are opposed or ignored by society in general. Moreover, the incumbent experts of the fast ideas vehemently oppose the incorporation of the slow ideas, but eventually accepted when their time has come.

Keirsey Temperament

The Keirsey Temperament Model (KTM) is a framework for understanding yourself and others. Millions of people have benefitted from the KTM, even though there was no advertising of it, except through word of mouth.

Keirsey Temperament Model’s Top Matrix

The Keirsey Temperament Model does not address, explicitly, the effect of gender, culture, and other environmental factors and influences on a person’s character, which are important factors in the development of an individual. On the other hand, understanding a person’s Temperament often can help in understanding these other factors and influences.

Quantum Mechanics and Quantum Potential

Quantum mechanics is the most accurate approximate theory in Science. Heisenberg’s Uncertainty Principle is correct but incomplete in understanding, because it is a principle (an assumption) not an explanation.  The debate between QM (ala Schrodinger, Heisenberg (Born), Dirac) versus the “hidden variable” QM Bohm-Einstein, both assume the continuity of the speed of light relative to the Planck scales (time, mass, energy, distance, spin, and charge). David Bohm’s new Quantum Potential (via The Undivided Universe) is a better ontological model than conventional QM; however, still doesn’t address the digital (Diophantine) nature of reality.

Quantum Potential

Quantum mechanics does not predict the right magnetic moment of the muon or tauon. And there are the three neutral leptons that have no explanation. Moreover, there is no set of relations, at this point of time (2020), that conventional physics has any hope of using to bridge that Fermi-Dirac-Landau gap. The Ersatz concepts of Dark Matter and Quantum Entanglement are vacuous rhetorical concepts pushed by the neo-Ostwaldian prophets. Quantum entanglement is a real phenomena, but the popular explanations are nonsensical. Formatics will hopefully address these issues.

Almost Wrong.

Give me a fruitful error any time, full of seeds,
bursting with its own corrections.
You can keep your sterile truth for yourself.
Vilfredo Pareto

There are almost wrong ideas that are much better than vague or confused ideas. These almost wrong ideas often are ground breaking for a time, and they are crucial in the evolution of science and ideas. These are the fast ideas or slow ideas of yesteryear. They’re the best science at the time, limited in the scope, and clearly to some degree very incomplete.

Personality Types

Isabel Myers created the Myers-Briggs Type Indicator (MBTI) and helped millions of individuals understand themselves better as individuals. Most people are not very good at introspection, but the MBTI although atomistic in its approach, the four linear factors [E-I,N-S,T-F,P-J], provided a better set of factors to see the People Patterns, than looking to doGs, daemons, tea leaves, 2000 year old texts, or dead ancestor’s droppings, to understand and as a guide to operate in the past, present, and future.

Isabel Myers modification and adding to Carl Jung’s vague and sloppy ideas was a major improvement. The idea that people are inborn in their different wants, needs, and styles of behavior, often contrary to their families, friends, and communities, was a game changing idea against the early and dominant 20th century blank slate ideas of Watson/Skinner or simplistic primal instinct theories of Freud and Pavlov. Can the individual be explained by four factors? No, but as an initial way of looking at an individual for the “content of their character”

Relativity and Particle Types

Energy/Matter: Isaac Newton was extremely successful when he invented differential and integral calculus to model Kepler’s concept of the motion of the heavens. Newton used his newly coined (mathematical) concepts of mass and fluxons to generate a simple equation relating these two to universal gravity. He also was the first to guess that light was a particle. He obviously had no idea of electrons, protons, and the particle and force zoo that his followers would expand upon.

Space/Time: Einstein, abandoned his work on Brownian motion and the photoelectric effect (involving a Planck constant), to concentrate on the mismatch between Hamiltonian mechanics and Maxwell’s equations. With the use of covariant tensors and the formalism of the Minkowski space, Einstein generated an approximate model of Newton’s guess at gravity that has been excellent in predicting interesting phenomena such as the bending of light waves, time dilation, gravity waves, and phenomena such as black holes. On the other hand, Einstein’s field equations cannot explain the rotation of galaxies and the evolution of the universe without numerous fudge factors (the Gravitational “constant”, the Hubble “constant”, “Dark Matter”, and “Dark Energy”). Einstein’s equations do not involve the Planck (finite) constants, in some sense hiding behind infinity.

From all this it is to be seen how much the limits of analysis are enlarged by such infinite equations; in fact by their help analysis reaches, I might say, to all problems, the numerical problems of Diophantus and the like excepted. [Editor’s emphasis]

Isaac Newton (Letter to Gottfried Leibniz on the advantages of infinitesimal calculus)

Ersatz Ideas: Brilliantly Confused or Sloppy Confused.

“Nothing is more obstinate than a fashionable consensus

Margaret Thatcher

These ersatz “confused” ideas are to be explored in more detail in a later blog; however, what follows is a short introduction of the concepts to be developed further. My father spent most of his life combating or ameliorating the effects of confused ideas. But it is not enough to criticize ideas that one considers wrong or confused, better ideas must be built from from old ideas and new ideas that address the issues finessed or ignored by the ideas of the current time.

Das ist nicht nur nicht richtig; es ist nicht einmal falsch!

Wolfgang Pauli

Almost Right and Almost Wrong Ideas are the bulk of science; however, there are ideas that arise that are either Brilliantly Confused or Sloppy Confused, that contribute to the evolution of science. These ideas are a little more complex to describe in their role in the evolution of science.

“What you said was so confused that one could not tell whether it was nonsense or not.”

Wolfgang Pauli (to Lev Landau)

Brilliantly Confused ideas often open up new vistas implicitly. To a degree the Brilliantly Confused ideas are partially right, but typically, for wrong reasons. Archetypes of Jung and Freud’s “talking cure” were better than the torture methods of the medics of the first half of the twentieth century, but ultimately have no scientific basis other than vague metaphors. String Theory was promising in the beginning, once Green and Schwarz figured out the right scale, but it rested on a bad assumption: mass and energy are continuous and proportional factors in non-equilibrium circumstances. These ideas eventually fade, but seem to never die.

Sloppy Confused Ideas are wrong turns on bad assumptions (often seen in hindsight, but sometimes obvious to a silent or silenced minority). The “Mental Illness” metaphor used to rationalize psychiatry’s and the pharmacological industry to drug their patients or clients, often compounding the problems of these victims of abuse from dysfunctional families and/or institutions. In the science of cosmology, Steven Hawking used his credibility and dominate position in the field to speculate about how the world works, the popular media loving to advertise his every word. However, Steven Hawking and David Deutsch’s Multiverse is more religion than science.

Active Learning: Learn, Unlearn, Learn

The thing I miss about my father, besides our spirited and long debates, was his interest in ideas. He was always up for discussing them. Looking at them and examining the pros and cons of ideas: how they are almost right, almost wrong, brilliantly confused, and sloppy confused. Understanding can always be improved.

I bailed out of Chemistry and Electrical Engineering as undergraduate to go into computing; however, I never gave up on trying to learn more and understand more, like quantum computing. With a fifth watching of Andrea Morello’s interview, I am still learning, unlearning, learning.

I also didn’t continue to learn more “mathematical” (non-discrete) concepts beyond my BS and MS degrees. Only in the last couple of decades I have gone back to learning, unlearning, learning other mathematical domains. For example, in understanding internal structure and dynamics, Peter Scott’s article The Geometries of 3-Manifolds has valuable information about the eight kinds of geometries in three dimensions.

Architect Rationals include: Mary SomervilleDavid Mark KeirseyJames MadisonSrinivasa RamanujanEmmy NoetherPaul DiracRobert RosenDavid West KeirseyAlbert EinsteinLonnie AthensDavid Bohm

The Digital Sand Reckoner

To see a World in a Grain of Sand

And a Heaven in a Wild Flower
Hold Infinity in the palm of your hand
And Eternity in an hour

— William Blake

New scientific ideas never spring from a communal body, however organized,
but rather from the head of an individually inspired researcher
who struggles with his problems in lonely thought and unites all his thought
on one single point which is his whole world for the moment.
Max Planck


Connecting precise physical relationships between the finites and the infinites.

Continue reading

The Naturalist

She was born a Natural.

Born when it wasn’t natural.

“Mathematics are the natural bent of my mind”
— Mary Somervillemarysomervillebyswinton

It was in her nature to be a scientist — damn the culture.

In fact, she was to become the first named scientist.  William Whewell, in his 1834 review of Somerville’s Connexion, coined the word “scientist” to describe Somerville.

Her mother taught her to read the Bible and Calvinist catechisms, and when not occupied with household chores Mary roamed among the birds and flowers in the garden.  In her autobiography Somerville recollects that after returning from sea her father said to her mother “This kind of life will never do, Mary must at least know how to write and keep accounts”. Thus the 10-year-old was sent for a year of tuition at Musselburgh, an expensive boarding school. Somerville learned the first principles of writing, rudimentary French and English grammar. Upon returning home, she:

“…was no longer amused in the gardens, but wandered about the country. When the tide was out I spent hours on the sands, looking at the star-fish and sea-urchins, or watching the children digging for sand-eels, cockles, and the spouting razor-fish. I made collections of shells, such as were cast ashore, some so small that they appeared like white specks, some so small that they appeared like white specks in patches of black sand. There was a small pier on the sands for shipping limestone brought from the coal mines inland. I was astonished to see the surface of these blocks of stone covered with beautiful impressions of what seemed to be leaves; how they got there I could not imagine, but I picked up the broken bits, and even large pieces, and brought them to my repository.”

Mary Somerville, Architect Rational, (1780-1872) was an innovative and talented science communicator, with an extraordinary (and mostly self taught) grasp of mathematics in an era when most women had no access to formal education. As a direct result of her work, calculus was introduced to the English speaking scientific world, the idea of physics (as a single subject containing topics such as optics, thermodynamics and astronomy) was invented, and the term “scientist” was coined to describe people who studied the various sciences.

Continue reading


He didn’t get it.

I was surprised, kinda.  But it made sense, why he didn’t think much of my suggestion.  In fact, in his seminar at UCIrvine Information and Computer Science department (as tactic to get MIT to give him a better offer as a tenured faculty member), he dismissed my “idea”, quickly, even though he had asked (obviously rhetorically, in hindsight) for suggestions as a kind of Socratic presentation tactic in his talk.

My mentioning of Kirchoff’s law as a parallel in regards into information flow, he thought irrelevant, and was rather dismissive.  But who was I, just a graduate student from a west coast Podunk U [which eventually was a key university in the development of the World Wide Web].  He was an assistant Professor from MIT, angling for tenure.


This time I understood.  Although I didn’t have a name for it at the time.  I just shut up.

Now, I call it eucaryotic hubrisWe all have it, in the area of our expertise and our vast areas of ignorance.

This time, I had had enough encounters with these kind of guys to not be in awe of them. I didn’t assume I was at fault in not understanding, and not smart enough it “get what they are promoting”.  They were just as ignorant as I was, despite being a “MIT Professor”.

And, Stupid, as me.  So when I was watching one of Geoffrey Hinton’s youtube talks…


I had interacted this “professor” before, in that seminar.   And I had listened to some of his other conference talks, he is very very very smart and accomplished.  So smart, these days, he is a distinguished emeritus faculty member, at the institution he got his BS and PhD at.  He has never had to move out of Massachusetts, or MIT.  No, this guy wasn’t Marvin Minsky, but his student.  So when Hinton told his offhand story, about Professor Carl Hewitt, I had to laugh.  Deja vu, all over again.

“Indeed, in their later years (after finding out that most others are faking an understanding of the laws of nature), INTPs [Architect Rationals] are likely to think of themselves as the master organizers who must pit themselves against nature and society in an unending effort to create organization out of the raw materials of nature.” – Please Understand Me II,  Keirsey, David. Please Understand Me II (Kindle Locations 4099-4107). Prometheus Nemesis Book Company. Kindle Edition.

As scientists, we all are struggling with understanding:

Formatics: Precise Qualitative and Quantitative Comparison. Precise Analogy and Precise Metaphor: how does one do that, and what does one mean by these two phrases? This is an essay, in the form of an ebook, on the nature of reality, measure, modeling, reference, and reasoning in an effort to move towards the development of Comparative Science and Relational Complexity. In some sense, this ebook explores the involution and envolution of ideas, particularly focusing on mathematics and reality as two “opposing” and “fixed points” in that “very” abstract space. As Robert Rosen has implied there has been (and still is going on) a war in Science. Essentially you can view that war as a battle between the “formalists” and the “informalists” — but make no mistake the participants of this war are united against “nature” — both are interested in understanding the world and sometimes predicting what can and will happen, whether that be real or imagined. So… I will ask the questions, for example, of “what could one mean” precisely by the words: “in,” “out,” “large,” and “small.” The problem is both Science and Mathematics are imprecise — but this sentence contains fighting words and is impredicative, to say the least. In my father‘s terms, it is important to distinguish between order and organization, and understand the difference. Lastly, for now, the concepts and their relations, in the circle of ideas of “dimensions of time” and dimensions of energy along with the dimensions of space and dimensions of mass will be explicated, as I evolve (involute and envolute) this ebook. SO WHAT IS HE TALKING ABOUT? Let me try to explain.


Other Architect Rationals include: Mary SomervilleDavid Mark KeirseyJames MadisonSrinivasa RamanujanEmmy NoetherPaul DiracRobert RosenDavid West KeirseyAlbert EinsteinLonnie AthensDavid Bohm

Gestalt Science and Formatics related blogs: Gestalt ScienceReimaginingFeynmanThat Relational ThingThe Digital Sand ReckonerTowards Quantum FormaticsThe Ring that Binds and GrindsPrimeOn the Question of Learning WordsOne Ring that Binds Them AllThe FunctionalWithin the Edge of…

Inventor Rationals include: Feynman, Atul GawandeLarry PageElaine MorganLynn MargulisElon MuskSteve JobsJoseph James SylvesterFrances CrickPaul AllenWerner Von BraunWolfgang PauliAbraham LincolnMark TwainHedy LamarrJulius Sumner Miller, and Zhang Xin

A Turning Point

David West Keirsey: Self Portrait
David Keirsey self portrait(August 31, 1921 – July 30, 2013)

My father died on July 30th, 2013 and I intend to honor him, if I can, by writing a blog about him and his ideas every year.  This is the third year.  First year.  Second Year. Third Year. Fourth Year.

“I regard myself as the last living Gestalt Psychologist”
— David West Keirsey

Gestalt: German word for form or shape

He wrote a short autobiography at the bequest of us, it was titled: Turning Points.  It chronicles some of the turning points of his life.  I want to write “an intellectual history” of him using some of that material plus my fading memory about the ideas we discussed in those many years, since it might be instructive to see how and why his ideas were formed and evolved.  Moreover, I think that his developed “methodology” of qualitative factor analysis and synthesis can contribute to the progress in science.

Continue reading

It’s a Slow Idea


Many people have asked why is Keirsey Temperament Theory not known broadly as “it should be.”

For a long time, I couldn’t give a good answer.

The answer is: “It’s a Slow Idea.”

My father outlines “The History of Madness”  in his lectures.  And the Wholistic Theory of Madness is a slow idea, its roots going back to over a century with my father adding the idea of Temperament in the last half century.   Fast Ideas about “madness” have been around since Homo Sapens possessed language.

The roots of the Idea of Keirsey Temperament also go back to ancient times.

In addition, there is the idea of: Slow Ideas <=> Fast Ideas

The root of this idea appeared just recently, thanks to Atul Gawande.

Continue reading

Of Complex Character, Revisited

Gaia is a tough bitch.

Hot Cold Passion: a passion for science.

She was a Scientist, first.

And she was a Character — a very interesting, and complex character.

Having entered the science community as a woman, when men still dominated science, and being charmed by a huge scientific ego, Carl, she luckily had to explore the backwaters of evolutionary biology at the time, bacteria, not getting much support from him or her male contemporaries.  Of course, like all good science, that estuary of knowledge contained biological riches totally ignored by well established conventional scientific community.  Like Darwin before, she was sui generis: a driven, feisty, no holds barred, idea brawler — an intellectual maverick — by necessity and choice.  Initially ignored, she generated a fair amount of hostility from the conventional scientific community when they were challenged.

And intellectual mavericks, with persistence, are the only type to challenge the major ideas of conventional science, and win — somewhat.

Continue reading


With the eyes of a child
You must come out and see
That your world’s spinning ’round
Moody Blues

She wrote it in plain and clear language, so, even a child understand.

However, I doubt many adults could understand it, even now: most adults are too stupid to understand.

No, not ignorant, just stupid.  Adults:  too naturally not interestedtoo busy, too lazy, too “know it all,” too impatient to really see  — and to learn.

Danger lies not in what we don’t know,
but in what we think we know that just ain’t so
– Mark Twain


Continue reading

On the Shoulder of a Giant

If I have seen a little further,
it is by standing on the shoulders of Giants.
Isaac Newton

We all know the quote. But often we don’t know the name of those Giants.

And she was not concerned that we know the true story, for in science, the shoulders are many and the results are what matter.

Newton’s giants were many: Copernicus, Galileo, Bruno, Kepler, Wallis, … But others were nameless.

Her giants included Newton, Haley, but also Annie Cannon.

And she was a giant, but who few know her name, for her almost contribution, or rather, her until recently uncredited contribution. For a man took that credit by publishing four years later essentially the same idea she had told him about — and that she deserved the real credit, for she was the first person to observe it and understand it.  Moreover, she had the imagination not blinded by “conventional wisdom:” the scientific heterodoxy, which wasn’t really science at the time, anyway. Consensus science is never a science.

But she didn’t know that…

Continue reading